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Relaxation to a Perpetually Pulsating Equilibrium
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Paper in honour of Freeman Dyson on the occasion of his 80th birthday. Nor-
mal N -body systems relax to equilibrium distributions in which classical kinetic
energy components are 1/2kT , but, when inter-particle forces are an inverse
cubic repulsion together with a linear (simple harmonic) attraction, the system
pulsates for ever. In spite of this pulsation in scale, r(t), other degrees of free-
dom relax to an ever-changing Maxwellian distribution. With a new time, τ ,
defined so that r2d/dt =d/dτ it is shown that the remaining degrees of freedom
evolve with an unchanging reduced Hamiltonian. The distribution predicted
by equilibrium statistical mechanics applied to the reduced Hamiltonian is an
ever-pulsating Maxwellian in which the temperature pulsates like r−2. Numeri-
cal simulation with 1000 particles demonstrate a rapid relaxation to this pulsat-
ing equilibrium.
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1. INTRODUCTION

In classical mechanics when N bodies interact with forces derived from a
potential

V =
∑
n

Vn, (1)

where Vn is of inverse nth power in |xi −xj |, the Virial theorem reads
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1
2

d2I

dt2
=2T +

∑
n

nVn =2E +
∑
n

(n−2)Vn. (2)

Here

I =
∑

i

mi |xi − x̄|2 =Mr2 =1/2
∑

i

∑
j

M−1mimj |xi −xj |2, (3)

and indices i, j run over the particles and x̄ =∑
mixi/

∑
mi . We notice

that the term with n=2 disappears from the second sum in Eq. (2). Fur-
thermore if the simple harmonic term is V−2 =1/2ω2 ∑

i<j

∑
M−1mimj

|xi − xj |2 then it can be re-expressed as ω2I/2. We now specialise to the
problem in which only V2 and V−2 are present, so that any two particles
of separation rij repel each other as r−3

ij and attract like rij . We consider
this special problem because Eq. (2) now reads

1
2

d2I

dt2
=2E −2ω2I, (4)

so I vibrates harmonically about the value E/ω2. If this excitation is
present initially it will continue vibrating at the same amplitude for ever,
despite the complication of the r−3

ij repulsions of the particles. Multiplying
Eq. (4) by dI/dt and integrating,

1
4

(
dI

dt

)2

=2EI −ω2I 2 −M2L2, (5)

where the last term is the integration constant. Using I =Mr2 this
becomes

1/2(ṙ2 +L2r−2 +ω2r2)M =E, (6)

which may be compared with the energy of a particle of mass M orbiting
with specific angular momentum L under a central simple harmonic force.
Evidently

d2r

dt2
=L2r−3 −ω2r. (7)
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To save writing unimportant details hereafter we take all the masses equal,
so that mi =m=M/N . The equation of motion for xi now reads

m
d2xi

dt2
=−mω2(xi − x̄)− ∂V2

∂xi

, (8)

where the simple harmonic forces were combined using Eq. (3). We now
employ rescaled variables defined by

Xi =xi − x̄
r
. (9)

Then

d2xi

dt2
= d2r

dt2
Xi +2

dr

dt

dXi

dt
+ r

d2Xi

dt2

= (L2r−3 −ω2r)Xi + r−3r2 d
dt

(
r2 dXi

dt

)
. (10)

Introducing a new ‘time’ τ by d/dτ = r2d/dt , we notice that Lτ is the azi-
muth of the particle in the imaginary orbit introduced under Eq. (6). The
equations of motion become

md2Xi/dτ 2 =−mL2Xi − ∂V2/∂Xi , (11)

where V2 = r2V2. Since V2 is homogeneous of degree −2 in the xi , one
merely replaces the xi by Xi to make V2 from V2. The result does not
depend on r explicitly. Equation (11) is thus an autonomous equation for
the evolution of the reduced variables Xi , but as functions of τ rather
than t .

From their definition (9) the Xi are constrained so that both∑
Xi =0,

∑
X2

i =N. (12)

Now the E in Eq. (1) is the energy relative to the centre of mass since the
I is measured in that frame, see Eq. (3). Our energy equation is therefore

E = 1
2

∑
m

[
d(xi − x̄)

dt

]2

+V−2 +V2

= 1
2
M(ṙ2 +ω2r2)+ r−2

[
1
2

∑
m

(
dXi

dτ

)2

+V2

]
. (13)
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Eliminating ṙ via Eq. (6) and multiplying by r2 we obtain

1
2
ML2 = 1

2

∑
m

(
dXi

dτ

)2

+V2. (14)

So the “energy” of the reduced variables in τ -time is ML2/2. Had we
directly integrated equation (11) to find this energy, it would not have been
obvious that the integration constant was zero.

We are now in a position to state our problem in statistical mechan-
ics. Given that the Xi must satisfy the constraints Eq. (12), what is their
statistical equilibrium and how does any such equilibrium translate back
into the eternally pulsating variables xi and ẋi? We find the equilibrium
in Section 2. In Section 3 we demonstrate by numerical experiment with
1000 particles that a system started well away from that pulsating equilib-
rium relaxes to the predicted ever-pulsating equilibrium. Finally in Section
4 we remark on the solutions of the corresponding problem in quantum
mechanics.

The problem is exceptional in that the normal dissipation of the
basic breathing mode is exactly absent. Nevertheless the other modes of
the system do dissipate. Although the long range simple harmonic force
seems very artificial the net effect is exactly that found by Newton for
the gravitational force within a homogeneous body. Such bodies have
inspired many delightful studies by the great mathematicians including one
by Freeman Dyson.(1) The special case of our problem in which V2 is
zero is the N -body problem exactly solved by Newton in the Principia.(2)

The pulsating equilibrium idea arose in our earlier generalisations of his
work to other extraordinary N -body problems that are exactly soluble in
both classical and quantum mechanics.(3,4) The special case when the har-
monic force is absent and the particles are on a line is the exactly soluble
Calogero model.(5)

2. STATISTICAL MECHANICS OF THE REDUCED SYSTEM

The constraint
∑

X2
i =N tells us that the 3N coordinates lie on a hy-

persphere of radius
√

N in 3N dimensions. Each of the three constraints∑
Xi =0 gives a hyperplane through the hypersphere’s centre so the first

of them reduces the 3N -sphere to a (3N − 1)-sphere; imposing the others
as well reduces that to a (3N − 3)-sphere. If V2 were zero the representa-
tive point would move freely on such a hypersphere and with V2 present
the motion is still a Hamiltonian one in the angles. The reduced system
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Eq. (11) still has a conserved total angular momentum. Writing X′
i for

dXi/dτ the conservation law is

∑
Xi ×mX′

i =
∑

(xi/r)×mr2 d
dt

(xi/r)=
∑

xi ×mẋi =J. (15)

Incorporating this constraint too, the reduced system has 3N − 7 degrees
of freedom. For details of the angles on the hypersphere and their corre-
sponding momenta see the appendix to ref. 4. Using Lagrange multipliers
mβ∗/2,γ, δ to impose the constraints of constant ‘energy’ ML2/2, J, and∑

X2
i on the equilibrium distribution function, it factorises into a distri-

bution function of momenta mX′ given by,

f ∝ exp[−β∗mX′2/2−γ.(X ×mX′)], (16)

and a distribution function of spatial coordinates.
Writing γ=−β∗� and omitting a further function of position

f ∝ exp[−β∗m(X′ −�×X)2/2]. (17)

Returning to our original variables x = rX and writing ẋ = v, we have
X′ = r[v− (ṙ/r)x] where r(t) is the ever pulsating scale. In terms of our old
variables f takes the form

f ∝ exp[−β∗mr2(v −u)2/2], (18)

where u = (ṙ/r)x−�r−2 ×x. We see that v is distributed Maxwellianly rel-
ative to the mean u(x, t). This mean moves with a time-dependent ‘Hub-
ble’ flow (i.e., one with velocity proportional to distance at each time)
superposed on a time-dependent rotation �r−2. Furthermore the tempera-
ture of the distribution is time-dependent with β∗r2 taking the place of the
normal β so that the temperature is proportional to r−2. We intentionally
omitted the spatial distribution from the above as it contains all the com-
plications of the problem. With both attractive and repulsive forces present
we expect phase transitions of solids to liquids and gases even in classi-
cal physics without quantum phenomena. At low temperatures we expect a
solid lattice but it can not be perfectly regular as the spacing must increase
outward as the pressure decreases. None of this prevents the whole body
undergoing large amplitude rescaling pulsations with the associated time-
dependent rotation predicted above. At high enough temperatures V2 is
always small compared with the kinetic energy and it can be neglected
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except as the means by which the system relaxes to its pulsating equilib-
rium whose density is then given by

ρ =ρ0 exp−[δZ2 +q(X2 +Y 2)], (19)

where X = (X,Y,Z). The coefficient q is best expressed in terms of
a reduced omega ω2 = mβ∗�2 and takes the form 4q = 3 − ω2 +√

(3−ω2)2 +2ω2. The Lagrange multiplier δ is δ =q + ω2/2. Notice that
δ → q → 3/2 as � → 0. From Eq. (19) we may calculate the moment of
inertia and thence the total angular momentum is J =�M/q. The other
Lagrange multiplier is determined from mβ∗L2 =3+ω2/q.

3. SIMULATING THE APPROACH TO THE PULSATING EQUILIBRIUM

Numerical simulations were carried out on a system of 1000 particles
of equal mass with pair interactions depending on their separation rij ,

V (rij )= 1
2m2

[
r2
ij + r−2

ij

]
, (20)

using the method of molecular dynamics.(6) The unit of mass was defined
so that the total mass M =1000 m was equal to one, and the equations
of motion were integrated using the Verlet velocity algorithm with a time
step of 0.001. With this choice of parameters the period of the oscillation
of r2 is π time units. The starting configuration was constructed from a
cubic array of particles with an initial interparticle spacing of 0.1 and the
origin of the coordinates was defined as the cube centre. Velocities were
chosen randomly from a Gaussian distribution, and adjusted so that the
velocity of the centre of mass was equal to zero and the total energy E

was equal to some specified value. The coordinate system was rotated so
that the angular momentum was along the z direction. In order to study
the approach to equilibrium, the initial velocity and spatial distributions
were perturbed by scaling the z velocities and z positions by a factor of
two. Such a scaling leaves the angular momentum unchanged.

The perpetual pulsating is illustrated in Fig. 1. The top curve in this
figure shows r2 as a function of time measured in periods of π time units
for periods 50–60 since the beginning of the simulation. The harmonic
pulsation of r2 is clear and both amplitude and phase are the same as
at the beginning of the simulation. The lower two curves show the total
potential energy and the contribution from V2, the inverse square term. It
can be seen that the latter term is only important during the phase of the
pulsation when the system is compressed so that r2 is small.
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Fig. 1. Variation of r2 (top), total potential energy (middle) and V2 (bottom) during 10 pul
sations following the first 50 pulsations.

The relaxation toward equilibrium of both the shape of the cluster
and the distribution of the peculiar velocities (v −u)= vp towards equilib-
rium are shown in Figs. 2 and 3. Figure 2 shows the shape of the cluster
as measured by the ratio

(∑
z2
i /

∑
x2
i

)1/2
, which tends to one at equilib-

rium, since the only angular momentum in the simulation is the small one
statistically generated in the initial conditions. Although the system is ini-
tially far from equilibrium, the shape relaxes over about five periods to an
approximately spherical distribution with equal second moments in x and
z, although both quantities are pulsating. Fluctuations in the ratio remain
for many periods. Figure 3 shows the changes in r2 ∑

v2
pz and r2 ∑

v2
px as

functions of time. According to Eq. (18) these quantities should be con-
stant and equal at equilibrium. Relaxation of the difference occurs over
about five pulsation periods.

The Maxwellian distribution of peculiar velocities (vp) predicted in
Eq. (18) is illustrated in Fig. 4. The top part of the figure shows the veloc-
ity distributions at eight different phases of the pulsation. At the phase
when the cluster is compact the velocity distribution is broader than when
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Fig. 2. Variation of the cluster shape
(∑

z2
i /

∑
x2

i

)1/2
at the beginning of the run. Note

that the initial anisotropy relaxes in about five pulsations.

the cluster is extended, but in every case the distribution is Maxwellian.
The middle part of the figure verifies that the width of the distribution is
inversely proportional to r as predicted by Eq. (18), as it shows that, when
the velocities are rescaled by r, the distributions coincide. To decrease
numerical fluctuations all these graphs average together the distributions
of the x, y and z components of velocity relative to the predicted mean
and also average the distributions taken at the same phases of 15 pulsa-
tions at the end of the run. The logarithmic plot of the distribution func-
tion against (vpx)

2 is shown to be linear in the final graph, confirming the
Maxwellian form of the distribution.

4. CONCLUSIONS

The predicted pulsating equilibrium is approached and forms a limit
cycle. A surprising aspect of this is that so-called ‘violent relaxation’,(8) the
decay of the pulsations of the long-range mean field through its action
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Fig. 3. Variation near the beginning of the run of the mean square peculiar velocities in
the z (solid) and x (dashed) directions scaled with r. Note that these relax to equal values in
about five pulsations.

on particle motions, does not occur for the fundamental mode. Neverthe-
less the other modes of the system do dissipate. So Violent Relaxation is
not totally absent. Limit cycles are well-known in dynamics but it is more
unusual to come across a pulsating Maxwellian distribution that continues
with no change of entropy. However a related case is found in the Planck
distribution of photons which remains rescaled but unchanged in shape or
entropy as the universe expands. That is not true of the distribution func-
tion of massive particles which need collisions to maintain equilibrium as
they cease to be relativistic. There are other many-particle systems known
to show continuing changes. For example, Friesecke and Pego(7) show that
the Pasta–Fermi–Ulam chain of anharmonic oscillators do not relax to an
equilibrium at low energies.

In ref. 4 we discussed the quantum mechanics of a closely related
problem including the relevant Fermi–Dirac and Einstein–Bose distri-
butions. The Hamiltonian separates in the form H = H̄ (x̄) + H̃ (r) +
r−2Ĥ (X). The use of momenta allowed us to get the solutions without
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Fig. 4. The equilibrium distribution of peculiar velocities. The upper graph shows the dis-
tribution of the peculiar velocities for eight phases of the pulsation cycle. The broad distri-
butions correspond to phases when the cluster is compressed and the narrowest portions to
expanded phases. In the middle graph the velocities have been rescaled with r demonstrat-
ing that the eight distributions coincide. The bottom portion demonstrates the Maxwellian
nature of the distribution by showing the logarithm of the distribution function is linear in
r2v2

px .
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the introduction of τ -time but the pulsations of the equilibrium have to
be sought out in the correlations whereas they stand out more clearly in
the classical case discussed above.
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